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a b s t r a c t

The development of an in-field plant sensing system for a site-specific application can

protect the environment from excessive chemicals and save management cost while main-

taining productivity. A multi-spectral imaging sensor has been introduced and widely used

for in-field plant sensing. In order for a robust performance of the spectral imaging sensor

under changes in ambient illumination, image quality must be maintained for proper spec-

tral image analysis. Image formation that is affected by camera parameters was identified,

and a controller was developed to compensate varying image intensity and to obtain the

desired image quality. A fuzzy logic control algorithm was applied to automatically adjust

the camera exposure and gain to control image brightness within a targeted gray level. Slow

convergence and oscillation were regulated by dynamic membership functions with differ-

ent weights in each image channel. Images affected by illumination disturbance quickly

converged into a desired brightness image within a maximum of five iterations over the

entire range of camera gains in all three spectral image channels. An application of in-field
plant sensing using the fuzzy logic image controller was evaluated on corn crops for nitro-

gen detection. The normalized spectral response of the sensor was inversely correlated to a

chlorophyll meter with −0.93 and −0.88 in red and green channels, respectively. The devel-

opment of an image quality controller using fuzzy logic enhanced the reliable performance

of the in-field plant sensing system.

1971), plant nutrients (Al-Abbas et al., 1974), leaf senescence
. Introduction

lant nutrients and water are essential elements for plant
rowth. Estimation of plant nutrients and water content gives
pportunities to optimize fertilization and irrigation practices

y supplying needs site-specifically throughout the growing
eason. The development of such an in-field plant sensing
ystem will potentially protect the environment from exces-
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sive chemicals and save management cost while maintaining
productivity.

Spectral sensors to estimate plant health responses have
been widely studied for water content (Thomas et al.,
nDeere.com (J.F. Reid), qinzhang@uiuc.edu (Q. Zhang).

(Gausman, 1985), and plant response to nitrogen (Bausch and
Duke, 1996; Solie et al., 1996; Borhan and Panigrahi, 1999; Thai
et al., 1998; Wilkerson et al., 1999). An image-based spectral
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sensor has been used to assess spectral signature of plant
leaves reflected by solar radiation (Bausch et al., 1998; Kim
et al., 2000; Lee et al., 1999) and to take advantage of image
processing to eliminate background noises that are major
obstacles in spectroscopic measurement addressed by Bausch
and Duke (1996).

In-field spectral measurements made under natural ambi-
ent illumination are significantly influenced by solar radiation
changes from cloudy to sunny, which affects spectral
responses at all stages of plant growth. The image histogram
obtained by leaf reflectance depends on the intensity and the
spectral distribution of the incoming energy. Changes in light
energy cause fluctuations in the gray-level distribution of tar-
get plants, resulting in an estimation bias. Thus, maintaining
the image quality is one of the most critical aspects of in-field
spectral measurement for making an appropriate estimate
of the plant health response. Appropriate control of camera
parameters, such as gain and exposure, has to be made to
achieve uniform quality of image brightness.

Many commercial camera systems provide automatic
exposure operation, in which the shutter speed or gain is
allowed to vary in response to varying illumination condi-
tions. Such internal automatic exposure control optimizes the
brightness of the overall image based on a perspective of opti-
mizing the visual appearance to a human observer. Problems
occur if used in continuous imaging where image brightness
features may vary from scene to scene due to internal camera
adjustments (King, 1995).

Fuzzy logic has been applied to exposure control in the
camera systems to take advantage of linguistic logic described
control systems. Commercial applications of exposure con-
trol using fuzzy logic have been shown by Sanyo Electric
Co. (Haruki and Kikuchi, 1992) and Sony Video Development
Group (Shimizu et al., 1992). Their common objectives were to
detect the image condition in the video cameras; such as back-
lighting and excessive frontlighting in which the luminance
of a main object deteriorates, and to compensate exposure in
order to obtain the appropriate luminance of the main object.

Haruki and Kikuchi (1992) proposed an approach to weight
the luminance data of six sub-areas to put emphasis on the
center of the image through exposure control by using fuzzy
logic to determine the degree of weighting on each area.
Shimizu et al. (1992) used the ratio of the pixels whose lumi-
nance was greater than a threshold to total pixels in order to
measure the contrast and the area ratio between the target
and background. Compensation of exposure as a fuzzy out-
put was obtained from inference rules with two fuzzy inputs.
Murakami and Honda (1996) used the color information of hue
and chroma of pixels with an input representing the impor-
tance of the background. They determined the amount of
compensation to control the degree of backlighting and exces-
sive frontlighting using fuzzy reasoning.

These special cases of backlighting and excessive front-
lighting are not applicable to plant health sensing, since
plants are always under the frontlighting condition from the
sunlight as an illumination source when a sensor looks down-

ward (Fig. 1). This study focused on obtaining robust image
quality against changes of natural ambient illumination. The
objectives of the paper are to develop a control algorithm
to compensate for illumination variation and to achieve a
r i c u l t u r e 6 0 ( 2 0 0 8 ) 279–288

consistent image quality using fuzzy logic, and evaluate the
performance of the fuzzy logic controller of a multi-spectral
image sensor.

2. Methods

2.1. Structure of in-field plant sensing system

An in-field plant sensing system for real-time nitrogen detec-
tion using a multi-spectral imaging sensor was the proposed
by Kim and Reid (2006). The system consists of a portable
computer (PAC 586, Dolch Computer Systems, Inc., Fremont,
CA) equipped with a PCI Frame Grabber (FlashBus MV, Integral
Technologies, Inc., Indianapolis, IN), a multi-spectral imaging
sensor (MSIS), an ambient illumination (AI) sensor (SKR1850A
4-channel, Skye Instruments Ltd., Powys, UK), a GPS, and a
vehicle platform (Fig. 1).

The MSIS was a custom-developed 3-CCD camera (Cohu
Inc., Poway, CA) with three video channels of green (G) at
550 nm, red (R) at 650 nm, and near-infrared (NIR) at 800 nm
with bandwidth of approximately 100 nm for each channel.
Images are captured by an image sensor with a resolution
of 640 H × 480 V at 8-bit/pixels. A frame grabber (FlashBus
MV, Integral Technologies, Inc.) was used to acquire images
through a high speed peripheral component interconnect (PCI)
interface supporting 24-bit color video with up to 16.8 mil-
lion colors. FlashBus brings real-time digitized video through
the PCI bus directly into system memory (off-screen capture
mode) at a video frame rate of 5–15 frames/s or directly into
VGA display memory (on-screen capture mode) at a video
frame rate of 30 frames/s (Integral Technologies Inc., 1998). A
serial interface provided external control of gain and shutter
speed for each independent video channel.

The conceptual layout of the spectral imaging system is
illustrated in Fig. 2. A plant image is captured by the MSIS
and the AI sensor records ambient illumination. The image,
affected by AI variation, is compensated for gain and exposure
control to centralize the gray-level distribution individually for
all three channels (R, G, and NIR). After convergence, the image
is segmented to remove non-vegetation components. Finally,
an application decision is made based on information given by
the system, such as image pixel statistics, AI data, duty cycle
of camera exposure, and GPS data (Kim and Reid, 2006). Based
on the plant stress level calculated from reflectance estimates,
a spray control output is determined and sent to a spray nozzle
controller.

For reliable extraction of spectral signatures, each image is
acquired such that the gray-level distribution falls within the
range of the image digitizer from 0 to 255 for a selected cam-
era setting for gain and exposure control. Changes in ambient
illumination in the field require a broad range of camera set-
tings. The camera parameters are dynamically adjusted using
a fuzzy logic controller to adjust the camera exposure and
gain.
2.2. Image processing

One of the advantages with the use of an image-based spectral
sensor is the ability to perform image processing to eliminate
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ig. 1 – Components of the in-field plant sensing system mo
ensor (MSIS), an ambient illumination (AI) sensor, a GPS, an

oisy portions of the sensor response. A target plant image
ften contains background components such as soil, shadow,
nd glare pixels. These backgrounds bias leaf reflectance esti-
ates and thus must be eliminated by using image processing.
Segmentation is used to identify object pixels from back-

round pixels. The object pixels of the corn plant canopy
ortions are obtained by thresholding the image gray-levels
or each channel (Fig. 3). Glare portions of leaves and soil are

emoved by setting a thresholding value of the upper bound-
ry from 255 to 240 in G-channel (Fig. 3(a)) and R-channel
Fig. 3(b), respectively. Shadow and soil backgrounds are elim-
nated in NIR-channel by changing a thresholding value of the

ig. 2 – Conceptual layout of the spectral imaging system. An im
mage is in optimum brightness, and then segmented for decisio
reen (G), and near-infrared (N).
d on a sprayer consisting of a multi-spectral imaging
computer.

lower boundary from 0 to 66 (Fig. 3(c)) and the upper boundary
from 255 to 240 (Fig. 3(d)), respectively. The thresholding val-
ues may need adjustment when applying to different types of
crop and soil. Further data analysis uses only the segmented
portions to derive leaf reflectance measurements and thus it
enhances the image to provide a more accurate estimate of
plant canopy response. The image is a composite image of
three image channels with a non-standard color assignment

such that G, NIR, and R channels are displayed as red, green,
and blue, respectively.

The threshold values for each image channel are manually
selected at the beginning of each data collection session and

age is updated by a fuzzy logic image controller until the
n making to control the sprayer. RGN stands for red (R),
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were
(d) so
Fig. 3 – Corn plant images into which three image channels
portions of leaves, (b) glare portions of soil, (c) shadow, and

then fixed for further images collected during that session.
Ambient illumination over time may affect the image inten-
sity and thus may sometimes require changing the threshold
values. However, a MSIS deploys image acquisition algorithm
to capture images at a target brightness achieved by a fuzzy
logic controller that dynamically controls the camera param-
eters. Therefore, the images are always expected to maintain
the target image brightness, and the segmentation levels are
consistent from image to image.

2.3. Fuzzy logic controller (FLC)

Fuzzy logic algorithms have been widely used in many
control applications. Unlike a conventional proportional-
integral-derivative (PID) controller, the FLC can achieve the
goals of steady output and satisfactory transient perfor-
mance simultaneously (Lee, 1990). However, choices of rule
sets and membership functions significantly affect achieving
these performance goals (Chen and Hoberock, 1995). Com-
ponents for the proposed fuzzy logic system are illustrated

in Fig. 4. Membership functions are used to transform crisp
inputs into fuzzy sets in the process of fuzzification and
fuzzy sets back into crisp outputs in the process of defuzzi-
fication. The FLC incorporates human knowledge into their

Fig. 4 – Block diagram of fuzzy logic system for image quality co
through fuzzy rules and membership functions.
composited: image segmentation to remove (a) glare
il.

knowledge base through fuzzy rules and fuzzy membership
functions.

2.3.1. Fuzzification
The fuzzy value for input and output is treated as a continuous
function, which is called a membership function. A fuzzy set F
in a universe of discourse X is characterized by a membership
function (�F) that takes values within [0,1] and generates a
degree of truth.

�F : X → [0, 1] (1)

Fuzzy sets are defined in a continuous mode and repre-
sented by triangle membership functions for both input and
output. A 50% overlap in the membership functions of all
fuzzy sets was used so that only two fuzzy sets had non-zero
degree-of-membership functions at any point of the universe
of discourse, which reduced the computation. The two degree-
of-membership functions (�F1, �F2) for input variable (�x) are
defined as:
�F1 = �x − CrispInput1

CrispInput2 − CrispInput1
, (2)

�F2 = 1 − �F1, (3)

ntrol. The fuzzy logic controller optimizes image quality
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Fig. 5 – Membership functions for fuzzy input (gray-level
value difference) and output (exposure or gain). When the
input variable is 15, membership functions become 0.32
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here �x is the difference of a current image from a tar-
et image brightness in an average gray-level (aveGL) scale.
rispInput1 and CrispInput2 represent the lower and the upper
oundary values, respectively, of two overlapped crisp input
omains where the input variable (�x) is defined.

.3.2. Inference rule
he FLC was designed to have one state input variable and

wo control output variables. The state input variable (�x) is
he aveGL offset of the current image from a target image
ith a desired brightness of aveGL = 128, corresponding to the
idpoint of the digital number scale from 0 to 255. The con-

rol output variables (�y) are the adjustments of the gain and
xposure (�GAIN and �EXP). Membership domains of input
nd output are chosen to cover the entire range of possible
nput and output values, which made scaling unnecessary.
he input (�x) and output (�y) are partitioned into four mem-
ership domains corresponding to four linguistic variables,
il, small, medium, and large. Inference rules that were used

n this study are explained as below:

If the error (�x) is nil, then the adjustment (�y) is nil.
If the error (�x) is small, then the adjustment (�y) is small.
If the error (�x) is medium, then the adjustment (�y) is
medium.
If the error (�x) is large, then the adjustment (�y) is large.

The sign of input variable (�x) is determined by 128 sub-
racted by a current aveGL and directly applies to the output:
f the input variable is +�x indicating a dark image, the same
+) sign is applied to the output variable (�y) to increase image
rightness, and vice versa.

.3.3. Defuzzification
fter obtaining the outputs from the set of fuzzy rules,
he rule-based system aggregates the output values and
efuzzifies the combined values through the fuzzy inference
echanism for the final decision (Kasabov, 1996). Among
any methods applied to the defuzzification stage, the

ig. 6 – Sensor characteristic of a plant sensing system. Each ima
ottom graph shows image histograms of all three bands where
and 0.68, the output variable is calculated from Eq. (4).

defuzzified compensation value for the control variable (�y)
was defined by:

�y = CrispOutput2 × �F1 + CrispOutput1 × �F2, (4)

where �F1 and �F2 are two degree-of-membership functions
obtained by Eq. (2 and 3), respectively, and CrispOutput1 and
CrispOutput2 represent the lower and the upper boundary
values, respectively, of two overlapped crisp output domains
where the output variable (�y) is defined.

Membership functions for the fuzzy input and output at
one of the three channels are illustrated in Fig. 5. If the input
variable (�x) is 15, its membership functions, � and � , are
F1 F2

calculated from medium and small, respectively, of the input
fuzzy sets (Eqs. (2 and 3)) and the output variable (�EXP) is
calculated based on corresponding output domains (Eq. (4)) as

ge channel is individually processed to converge to 128. A
one of them is away and needs to converge to 128.
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Fig. 7 – Block diagram of the camera control system.
Difference of a mean gray-level value from a reference
value (128) is used as an input of the fuzzy controller to

tialized with previously used values by reading a file updated
every run. Gain control was first performed for coarse tun-
ing to make the error within a gray-level range of ±10, setting
284 c o m p u t e r s a n d e l e c t r o n i c s

following:

�F1 = 15 − 8
30 − 8

= 0.32, (5)

�F2 = 1 − �F1 = 0.68, (6)

and thus,

�EXP = 3.2 × �F1 + 1.7 × �F2 = 2.18. (7)

2.4. Image quality control

The characteristic of the 3-CCD multi-spectral imaging senor
for the plant sensing is illustrated in Fig. 6. Light energy com-
ing through the camera generates the image of target plants.
Images in each video channel are formatted in a gray-scale
from 0 to 255. The image in each channel is individually pro-
cessed and analyzed. The lower graph of Fig. 6 shows image
histograms of all three image bands where one of them is away
and needs converge to 128.

A block diagram of the camera control system is shown in
Fig. 7. Image brightness in each video channel is determined
by both ambient illumination and camera parameter settings.
To evaluate the image quality, a mean gray-level value in each
channel is compared with a reference value of 128, a middle
value of the gray-scale. The resulting difference in each chan-
nel is sent to the FLC as fuzzy input to calculate the adjustment
of gain and exposure. Gains varies from 0.4 to 4.0 [V] in 16-bit
digital representation, while the exposure has 278 stepwise
increases ranged from 0 to 100% representing the full open at
1/30 s. Image convergence is obtained by a combination of the
two camera parameters.

3. Experiments and results

3.1. Image formation of camera parameters: gain and
exposure

An experiment was conducted to find the properties of the
camera parameters with respect to reflectance responses. The
reflectance of the MSIS was modeled and calibrated with a
known reflectance panel perpendicular to the sun (Kim and
Reid, 2006). The same setup was used to evaluate the fuzzy
logic image controller to minimize bidirectional effects that
plant canopies are subject to due to a fixed nadir-view posi-
tion of the camera under varying solar zenith angles (Kim and
Reid, 2007). Two sets of MSISs and AI sensors with a stan-
dard 20% reflectance panel (Munsell, GretagMacbeth LLC, New
Windsor, NY) was mounted on tripods and oriented coinci-
dently such that all components were perpendicular to the
sun, as shown in Fig. 8. Captured images were subject to the
shadows of the sensors, but the shadows were removed by
image segmentation and only unshaded portions were further
processed.

The relationship of gain and exposure is illustrated in

Fig. 9. The figure includes the reflectance responses affected
by the combination of the gain and exposure. The exposure
decreases as the gain increases. Since effects other than the
gain changes remained the same, only the exposure had to be
update the exposure and gain.

reduced to cancel out the magnification effect due to the gain
increase.

The resolution of exposure was limited to a minimum value
of 0.36% due to the exposure range of 100% divided by stepwise
increase of 278. Accordingly, if the exposure increase (�Exp)
generated by the FLC required less than 0.36%, the exposure
signal was saturated and thus the response became unsta-
ble due to the loss of resolution. This occurred at high gain
with low exposure, which generated the loss of consistency
in reflectance responses for three channels (Fig. 9). Therefore,
it was important to keep the gain as small as possible, which
tended to result in higher exposure values. Assuming some
boundary effects on the range of the exposure, a value of 80%
was selected for a desired value of exposure.

Based on the relationship between gain and exposure, a
control algorithm was derived and its flowchart is illustrated
in Fig. 10. For each channel, the gain and exposure were ini-
Fig. 8 – Experimental setup of image formation affected by
camera parameters. Two sets of MSISs and AI sensors, and
a reflectance panel were oriented perpendicular to the sun.
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Fig. 9 – MSIS reflectance responses affected by combination of the exposure and gain: stability of the MSIS response
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ecreases as the gain increases.

he exposure to 80%. Then exposure control followed for fine-
uning until the images in all three channels converged to

reference value with a tolerance of ±3 gray-levels. This
nsured that the exposure was kept in a high resolution rang-

ng from 50 to 100%. The control loop was terminated if the
teration reached to a maximum of 50 or no adjustment of
oth gain and exposure in three channels, which happens if
aturation conditions occur on a channel.

ig. 10 – Flowchart of image quality control algorithm.
mage capture is iterated to update exposure (EXP) and gain
GAIN) until the image deviation (�x) falls within a
olerance.
3.2. Fuzzy membership tuning

A further experiment was performed to evaluate the con-
trol algorithm. Membership functions for input and output
were chosen for satisfactory image quality by control tuning
based on gray-level histograms. Fuzzy sets with fixed mem-
bership functions (Fig. 5) were subject to two possible failures:
slow convergence and oscillation. Since the gain increased
the sensitivity of the exposure adjustment, the slow conver-
gence occurred when the gain was small, while the oscillated
response resulted from a high gain. To prevent these problems,
membership functions were dynamically adjusted according
to the gain.

Another factor to consider was different convergence rate
of three channels, because each CCD element had different
sensitivity due to optical transfer function differences. In order
to prevent the different convergence rate, membership func-
tions were tuned for each channel (i) individually according
to its sensitivity by assigning different weight for gain (WGAIN)
and exposure (WEXP) as follows:

Fuzzy input domain:

Fuzzy Input Domain [0] = 1.0 (8)

Fuzzy Input Domain [1] = 8.0 + (30.0 − 8.0) × (WGAINi − 0.4)
3.7

(9)

Fuzzy Input Domain [2] = 30.0 + (90.0 − 30.0) × (WGAINi − 0.4)
3.7

(10)

Fuzzy Input Domain [3] = 90.0 (11)
Fuzzy output domain for gain control:

Fuzzy Output Domain [0] = 0.0 (12)
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Fig. 11 – Image convergence in red image channel over a
full range of the gain. The image starts from saturation
(255) at high gains and converges to 128 by the fuzzy logic
image controller.

Fig. 12 – Image convergence in green image channel over a
full range of the gain. The image starts from saturation
(255) at high gains and converges to 128 by the fuzzy logic
image controller.
286 c o m p u t e r s a n d e l e c t r o n i c s

Fuzzy Output Domain [1] = 0.05 × WGAINi (13)

Fuzzy Output Domain [2] = 0.2 × WGAINi (14)

Fuzzy Output Domain [3] = 0.5 × WGAINi (15)

Fuzzy output domain for exposure control:

Fuzzy Output Domain [0] = 0.3 (16)

Fuzzy Output Domain [1] = 1.7 × (3.2 − 1.7) × WEXPi

× (4.0 − WGAINi)
3.6

(17)

Fuzzy Output Domain [2] = 3.2 × (7.5 − 3.2) × WEXPi

× (4.0 − WGAINi)
3.6

(18)

Fuzzy Output Domain [3] = 7.5 × (10.0 − 7.5) × WEXPi

× (4.0 − WGAINi)
3.6

(19)

3.3. Image convergence

The performance of the fuzzy logic image controller was
experimentally evaluated using manually selected distur-
bance. Such condition was artificially created by manually
initializing gains and exposures. For example, initializing gain
and exposure to a high initial value, an initial image becomes
very bright, which was the same situation as the moment of
a change from a cloudy to sunny condition.

Accordingly, the experiment was implemented by setting
the exposure to a middle value of 50% and varying the gain
over a full range from 0.5 [V] to 4.0 [V] with 0.5 [V] increase at
each test. With each test set of gains and exposures, the image
histograms in all three channels were recorded throughout a
control loop to observe the convergence performance individ-
ually.

The results of image convergence at R, G, and NIR chan-
nels are shown in Figs. 11–13, respectively. In both spectral
sensors, images in all three channels quickly converged to a
desired range of 128 ± 3 gray-levels for each channel. Most of
the images converged within five iterations. Exception to this
was saturation in R and G channels that was caused by sensor
optical limitation. With approximate 20 Hz processing rate for
image control loop, converged images were obtained within a
second.

3.4. In-field plant sensing

The MSIS system (Fig. 1) associated with image control soft-
ware was evaluated to detect the crop response relative to
nitrogen (N) application treatment and chlorophyll meter

(SPAD 502, Minolta Co., Japan). A corn crop was planted on
two plots in early and late February. Each plot had 16 rows
spaced 76.2 cm apart and of length 105 m. Plots were estab-
lished by applying eight-stepped treatment of N to create

Fig. 13 – Image convergence in NIR image channel over a
full range of the gain. The image starts from saturation
(255) at high gains and converges to 128 by the fuzzy logic
image controller.
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Fig. 14 – MSIS responses compared with SPAD
measurements and N treatments on corn crops. Both follow
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he stepwise-stressed field pattern. The MSIS responses
how less variation than SPAD measurements.

ifferences in crop stress. The SPAD readings ranged from 19
o 24 for severely stressed plants to 45 to 53 for non-stressed
lants. Fig. 14 shows comparisons between normalized MSIS
esponses and SPAD measurements along with variable N
reatments. The normalized MSIS response was calculated to
stimate N deficiency as a ratio of NDVI to 0.73 as a refer-
nce NDVI of healthy crops. Correlation coefficients between
he MSIS responses and SPAD measurements were −0.88 and
0.93 in R and G channels, respectively. Both responses closely

ollowed the variation of N treatments. The MSIS response
howed a stable distribution, while the SPAD measurements
ad more variation (Fig. 14). Since the SPAD meter measured
nly a small area of 2 mm × 3 mm on the plant leaf, the mea-
urements at each location were insufficient to represent the
rop field characteristics over the wider area captured by the
SIS.

The fuzzy logic image controller enhanced image acqui-
itions in optimum brightness and delivered stable response
n N assessment of corn plants. Evaluations of the MSIS sys-
em with fuzzy logic image controller were further tested on
heat N mapping (Kim et al., 2002), turf glass disease detec-

ion (Fermanian et al., 2003), and apple yield mapping (Kim
nd Reid, 2004).

. Conclusions

fuzzy logic controller for an image-based plant sensing
ystem was developed and evaluated to compromise vary-
ng ambient illumination. Since a spectral image response
as affected by the combinations of gain and exposure, the
ptimal selection of a combination of gain and exposure was
arefully selected by observing the properties of the camera

arameters in response to reflectance responses. When the
xposure increase required less than the minimum resolu-
ion with a high gain, the response became unstable due to
he loss of resolution. To minimize the resolution limitation of
i c u l t u r e 6 0 ( 2 0 0 8 ) 279–288 287

the exposure, it was desired for the exposure to remain high
and for the gain to be as low as possible.

A control algorithm was developed to compensate for illu-
mination variation and maintain image quality using fuzzy
logic. The controller adjusted image sensor parameters in
response to image feedback. Images affected by ambient illu-
mination converged into a desired image within processing
time of less than a second. The simple algorithm used in
this study to calculate the degree of membership helped to
increase computing speed. Slow convergence and oscillation
were regulated by dynamic membership functions with differ-
ent weights in each channel. An application of plant nitrogen
sensing using the multi-spectral imaging sensor with the
fuzzy logic image controller presented superior performance
of the sensor to a chlorophyll meter. Further applications of
the spectral image controller can be extended on different
crops to estimate various spectral signatures.
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